Dr. Khaled El Naggar

Quiz 2

$f(x)=c\left(9-x^{2}\right)$, for $0<x<3$, find $E(X), \operatorname{Var}(X), F(X)$.
$c \int_{0}^{3}\left(9-x^{2}\right) d x=1 \Rightarrow c=1 / 18, E(X)=\int_{0}^{3} x\left(9-x^{2}\right) d x=81 / 4, E\left(X^{2}\right)=\int_{0}^{3} x^{2}\left(9-x^{2}\right) d x=162 / 5$,
$\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=162 / 5-[1 / 18]^{2}, F(X)=\int_{0}^{x} \frac{\left(9-x^{2}\right)}{18} d x=\frac{27 x-x^{3}}{54}$.

$f(x)=(1 / x)$ for $1<x<e$, find $E(\ln X)$, $\operatorname{Var}(3 X)$.

$$
\begin{aligned}
& \mathrm{E}(\ln \mathrm{X})=\int_{1}^{\mathrm{e}} \frac{\operatorname{Lnx}}{\mathrm{x}} \mathrm{dx}=\frac{(\operatorname{Lnx})^{2}}{\mathrm{x}}=1 / 2, \operatorname{Var}(3 X)=9 \operatorname{Var}(X), \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\
& \mathrm{E}(\mathrm{X})=\int_{1}^{e} d x=x_{1}^{e}=e-1, E\left(X^{2}\right)=\int_{1}^{e} \mathrm{x} d x=\frac{x^{2}}{2}=\frac{e^{2}-1}{2}
\end{aligned}
$$

$\mathrm{f}(\mathrm{x})=\mathrm{cx}^{2}, \quad 0<\mathrm{x}<2$, find $\mathrm{F}(\mathrm{X}), \mathrm{P}(1 / 2<\mathrm{x}<3 / 2)$.
$\mathrm{c} \int_{0}^{2} \mathrm{x}^{2} \mathrm{dx}=1 \Rightarrow \mathrm{c}=3 / 8, \mathrm{~F}(\mathrm{X})=\int_{0}^{\mathrm{x}} \frac{3 \mathrm{x}^{2}}{8} \mathrm{dx}=\frac{\mathrm{x}^{3}}{8}, \mathrm{P}(1 / 2<\mathrm{x}<3 / 2)=\mathrm{F}(3 / 2)-\mathrm{F}(1 / 2)=\frac{27}{64}-\frac{1}{64}=\frac{26}{64}$
$f(x)=c x^{3},-1<x<2$, find $E(x)$.
$c \int_{-1}^{2} x^{3} d x=1 \Rightarrow c=4 / 15, E(x)=-\int_{-1}^{0} \frac{4 x^{4}}{15} d x+\int_{0}^{2} \frac{4 x^{4}}{15} d x=-{\frac{4 x^{5}}{75}}_{-1}^{0}+{\frac{4 x^{5}}{75}}_{0}^{2}=-\frac{4}{75}+\frac{128}{75}=\frac{124}{75}$

$$
\begin{aligned}
& f(x)=c x^{n}, 0<x<1 \text {, find } P(X>x) . \\
& c \int_{0}^{1} x^{n} d x=1 \Rightarrow c=n+1, P(X>x)=1-P(X<x)=1-(n+1) \int_{0}^{x} x^{n} d x=1-x^{n+1}
\end{aligned}
$$

$f(x, y)=c x y, 0<x<4,1<y<5$, find $E(X), \operatorname{Var}(Y)$.

$$
\begin{aligned}
& c \int_{1}^{5}\left(\int_{0}^{4} x y d x\right) d y=\left.1 \Rightarrow c \int_{1}^{5} \frac{x^{2} y}{2}\right|_{0} ^{4} d y=1 \Rightarrow c \int_{1}^{5} 8 y d y=1 \Rightarrow c=1 / 96, f_{1}(x)=\int_{1}^{5} \frac{x y}{96} d y=\left.\frac{x y^{2}}{192}\right|_{1} ^{5}=x / 8, E(X)= \\
& \int_{0}^{4} x f_{1}(x) d x=\int_{0}^{4} \frac{x^{2}}{8} d x=\left.\frac{x^{3}}{24}\right|_{0} ^{4}=8 / 3, f_{2}(y)=\int_{0}^{4} \frac{x y}{96} d x=\left.\frac{x^{2} y}{192}\right|_{0} ^{4}=y / 12, E(Y)=\int_{1}^{5} y f_{2}(y) d y=\int_{1}^{5} \frac{y^{2}}{12} d y= \\
& \left.\frac{y^{3}}{36}\right|_{1} ^{5}=31 / 9, E\left(Y^{2}\right)=\int_{1}^{5} y^{2} f_{2}(y) d y=\int_{1}^{5} \frac{y^{3}}{12} d y=\left.\frac{y^{4}}{48}\right|_{1} ^{5}=\frac{624}{48}=13, \operatorname{Var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=92 / 81
\end{aligned}
$$

If a r.v. X takes the values $1,2,3,4$ such that $2 P(X=1)=3 P(X=2)=P(X=3)=5 P(X=4)$. Find the probability distribution of X .
Let $2 \mathrm{P}(\mathrm{X}=1)=3 \mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=5 \mathrm{P}(\mathrm{X}=4)=\mathrm{P}$, therefore $\mathrm{P}(\mathrm{X}=1)=\mathrm{P} / 2, \mathrm{P}(\mathrm{X}=2)=\mathrm{P} / 3, \mathrm{P}(\mathrm{X}=3)=\mathrm{P}$, $\mathrm{P}(\mathrm{X}=4)=\mathrm{P} / 5$, but $\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)+\mathrm{P}(\mathrm{X}=3)+\mathrm{P}(\mathrm{X}=4)=1$, thus $\mathrm{P} / 2+\mathrm{P} / 3+\mathrm{P}+\mathrm{P} / 5=1, \mathrm{P}=30 / 61$, then the probability distribution of X is expressed by

X	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$15 / 61$	$10 / 61$	$30 / 61$	$6 / 61$

Find the variance and the standard deviation of the sum obtained in tossing a pair of fair dice.
Let the random variable $\mathrm{X}=$ sum of the numbers facing up, so the probability distribution can be expressed in the form

X	2	3	4	5	6	7	8	9	10	11	12
$\mathrm{P}(\mathrm{X})$	$1 / 36$	$2 / 36$	$3 / 36$	$4 / 36$	$5 / 36$	$6 / 36$	$5 / 36$	$4 / 36$	$3 / 36$	$2 / 36$	$1 / 36$

$\mathrm{E}(\mathrm{X})=2(1 / 36)+3(2 / 36)+4(3 / 36)+5(4 / 36)+6(5 / 36)+7(6 / 36)+8(5 / 36)+9(4 / 36)+10(3 / 36)+11(2 / 36)$ $+12(1 / 36)=252 / 36=7$ and $\mathrm{E}\left(\mathrm{X}^{2}\right)=2^{2}(1 / 36)+3^{2}(2 / 36)+4^{2}(3 / 36)+5^{2}(4 / 36)+6^{2}(5 / 36)+7^{2}(6 / 36)+$ $8^{2}(5 / 36)+9^{2}(4 / 36)+10^{2}(3 / 36)+11^{2}(2 / 36)+12^{2}(1 / 16)=1974 / 36$, therefore: $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}$ $=1974 / 36-49=210 / 36$ and standard deviation $\sigma_{x}=\sqrt{\operatorname{Var}(\mathrm{x})}$
$\overline{\text { Find the variance and the standard deviation of the maximum of the } 2 \text { scores obtained in tossing a pair of }}$ fair dice.

Let the random variable $\mathrm{X}=$ the maximum of the 2 scores, so the probability distribution can be expressed in the form

X	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X})$	$1 / 36$	$3 / 36$	$5 / 36$	$7 / 36$	$9 / 36$	$11 / 36$

$\mathrm{E}(\mathrm{X})=1(1 / 36)+2(3 / 36)+3(5 / 36)+4(7 / 36)+5(9 / 36)+6(11 / 36)=161 / 36$ and $\mathrm{E}\left(\mathrm{X}^{2}\right)=1^{2}(1 / 36)$ $+2^{2}(3 / 36)+3^{2}(5 / 36)+4^{2}(7 / 36)+5^{2}(9 / 36)+6^{2}(11 / 36)=791 / 36$, therefore: $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}$ $=791 / 36-(161 / 36)^{2}=2555 / 1296 \approx 2$ and standard deviation $\sigma_{\mathrm{x}}=\sqrt{\operatorname{Var}(\mathrm{x})}$

Find the variance and the standard deviation of the minimum of the 2 scores obtained in tossing a pair of fair dice.

Let the random variable $\mathrm{X}=$ the minimum of the 2 scores, so the probability distribution can be expressed in the form:

X	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X})$	$11 / 36$	$9 / 36$	$7 / 36$	$5 / 36$	$3 / 36$	$1 / 36$

$\mathrm{E}(\mathrm{X})=1(11 / 36)+2(9 / 36)+3(7 / 36)+4(5 / 36)+5(3 / 36)+6(1 / 36)=91 / 36$ and $\mathrm{E}\left(\mathrm{X}^{2}\right)=1^{2}(11 / 36)$ $+2^{2}(9 / 36)+3^{2}(7 / 36)+4^{2}(5 / 36)+5^{2}(3 / 36)+6^{2}(1 / 36)=301 / 36$, therefore: $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}$ $=301 / 36-(91 / 36)^{2}=2555 / 1296 \approx 2$

Let the r.v. X represents the number of boys in a family of 3 children, find the mean and standard deviation of X.

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

$\mathrm{E}(\mathrm{X})=1(3 / 8)+2(3 / 8)+3(1 / 8)=3 / 2, \mathrm{E}\left(\mathrm{X}^{2}\right)=1(3 / 8)+4(3 / 8)+9(1 / 8)=3, \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}$ $=3-(3 / 2)^{2}=0.75$ and standard deviation $\sigma_{x}=\sqrt{\operatorname{Var}(x)}$

Four coins are tossed once. Let X be the number of heads obtained, find its mean and standard deviation.

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$1 / 16$	$4 / 16$	$6 / 16$	$4 / 16$	$1 / 16$

$\mathrm{E}(\mathrm{X})=1(1 / 4)+2(3 / 8)+3(1 / 4)+4(1 / 16)=2, \mathrm{E}\left(\mathrm{X}^{2}\right)=1(1 / 4)+4(3 / 8)+9(1 / 4)+16(1 / 16)=5, \operatorname{Var}(\mathrm{X})=$ $\mathrm{E}\left(\mathrm{X}^{2}\right)-(\mathrm{E}(\mathrm{X}))^{2}=5-(2)^{2}=1$ and standard deviation $\sigma_{\mathrm{x}}=\sqrt{\operatorname{Var}(\mathrm{x})}=1$

Find the probability distribution of boys and girls in families with 3 children assuming equal probabilities for boys and girls, and then graph the distribution. Also find distribution function and graph it.
Let the r.v. X represents the number of boys in a family of 3

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

The distribution function is represented by

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$1 / 8$	$1 / 2$	$7 / 8$	1

A random variable X has density function $\mathrm{f}(\mathrm{x})=\frac{\mathrm{c}}{\left(1+\mathrm{x}^{2}\right)} \quad-\infty<\mathrm{x}<\infty$. Find the constant c and the probability between $1 / 3$ and 1 , then find distribution function.
$\mathrm{c} \int_{-\infty}^{\infty} \frac{\mathrm{dx}}{\left(1+\mathrm{x}^{2}\right)}=\left.1 \Rightarrow \mathrm{c} \tan ^{-1} \mathrm{x}\right|_{-\infty} ^{\infty}=1 \Rightarrow \mathrm{c}=1 / \pi, \mathrm{P}(1 / 3<\mathrm{x}<1)=\int_{1 / 3}^{1} \frac{\mathrm{dx}}{\pi\left(1+\mathrm{x}^{2}\right)}=\frac{\tan ^{-1}(1)-\tan ^{-1}(1 / 3)}{\pi}, \mathrm{F}(\mathrm{X})=$ $\int_{-\infty}^{x} \frac{d x}{\pi\left(1+x^{2}\right)}=\frac{\tan ^{-1}(x)+\pi / 2}{\pi}$

Suppose that you are offered the following "deal." You roll a die. If you roll a 6, you win \$10. If you roll a 4 or 5 , you win $\$ 5$. If you roll a 1,2 , or 3 , you pay $\$ 6$. Construct a PDF and the expected average winnings per game?
Let the r.v. X represents the number of winning dollars

X	5	6	10
$\mathrm{P}(\mathrm{X})$	$1 / 3$	$1 / 2$	$1 / 6$

$\mathrm{E}(\mathrm{X})=5(1 / 3)+6(1 / 2)+10(1 / 6)=19 / 3$

